
Tetrahedron
Tetrahedron Letters 45 (2004) 1763–1767

Letters
Unprecedented chemo-enzymatic synthesis of stereochemically
pure 3-acetoxy-2-methyl-2-vinylcycloalkanones
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Abstract—A new approach to 3-acetoxy-2-methyl-2-vinylcyclohexanone and 3-acetoxy-2-methyl-2-vinylcyclopentanone in stereo-
chemically pure state, by means of a combination of yeast-catalyzed reduction and subsequent radical b-fragmentation is
described.
� 2003 Elsevier Ltd. All rights reserved.
2,2-Disubstituted-3-hydroxycycloalkanones, which are
prepared by baker�s yeast-catalyzed reduction of the
corresponding diketones, are good starting materials for
the construction of a characteristic structural feature
with chiral centers (A, such as stypoldione, Fig. 1) in
natural product synthesis, involving terpenoids, de-
graded carotenoids, steroids, and related substances, in
enantiomerically pure form.1 For example, Mori has
demonstrated a large number of applications on 2,2-
dimethyl-3-hydroxycyclohexanone 2a from 2,2-dimeth-
ylcyclohexane-1,3-dione 1a (Scheme 1).2

A problem in this approach is that the range of sub-
strates available to yeast-catalyzed reduction, however,
is rather limited. Needless to say, some advanced com-
pounds bearing substituents convertible to oxygen-con-
taining functional groups at the C-2 position (B) deserve
attention in natural product synthesis such as tripto-
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callol (Fig. 1). Recently, Nakada and co-workers
reported an elegant approach,3 the preparation of
2-benzyloxymethyl-2-methylcyclohexane-1,3-dione 1b,
based on the Birch reduction of 2,6-dimethoxybenzoic
acid and subsequent transformations, submitted that to
baker�s yeast-catalyzed reduction and successfully
obtained the hydroxyketone 2b0. In turn, another
approach via the alkylation of the precursors, 2-methyl-
cycloalkane-1,3-diones, which apparently seems to be
more general, is somewhat problematic. Toward most
alkyl halides other than methyl iodide, the enolates of
the diketones are prone to undergo O-alkylation even
with ethyl iodide.4 The allyl and propargyl groups meet
this criterion, and the diketones 1c and 1d are obtainable
in acceptable yields, but the subsequent yeast-catalyzed
reductions proceeded in a nonenantiotopic group-
selective manner to give an almost equimolar mixture
of diastereomers (2c+2c0, 2d+2d0, Scheme 1).5;6 We
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Scheme 1. Yeast-catalyzed reduction of 2-substituted-2-methylcycloalkane-1,3-diones.
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envisioned that 2-methyl-2-vinylcycloalkane-1,3-diones
such as 1e, would be other very attractive substrates for
yeast-catalyzed reduction. The direct introduction of a
vinyl group on this position, however, is extremely dif-
ficult, and only phenyl 2-(trimethylsilyl)ethynyl sulfone
as an electrophile, vinyl cation equivalent, has been
reported.7

In recent years, we found that a yeast strain, Torulas-
pora delbrueckii IFO10921,8 worked very well on the
triketones 1f and 3f, which are readily available from
2-methylcycloalkane-1,3-diones and methyl vinyl
ketone, to give the stereochemically pure products
(Scheme 1).8;9 For example, from the triketone 1f, a
cyclic hemiacetal 5f was obtained in 60% yield. The
combined X-ray crystallographic structure determina-
tion and chemical transformations proved its structure
to be (1S,3S,6S)-configuration.8
Table 1. Studies on the reagents available to the b-fragmentation of the hem

Entry Reagent Oxidant

1b Pb(OAc)4 Cu(OAc)2ÆH2O

2c PhI(OCOCF3)2 Cu(OAc)2
3 PhI(OAc)2 Cu(OAc)2
4 PhI@O Cu(OAc)2

a Pyridine, benzene, reflux, 15 h.
b 38 h.
c CH2Cl2, rt, 1 h.
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Scheme 2. Synthetic plan for 3-acetoxy-2-methyl-2-vinylcycloalkanones.
In this paper, we report an unprecedented route to
3-acetoxy-2-methyl-2-vinylcyclohexanone 7e and
3-acetoxy-2-methyl-2-vinylcyclopentanone 8e in stereo-
chemically pure state, from these cyclic hemiacetals 5f
and 6f by means of a radical b-fragmentation. Our idea,
which was inspired by Rigby�s transformation,10 is
shown in Scheme 2. If a proper precursor can be pre-
pared and the homolytic cleavage of this O–X bond
takes place (C), the subsequent b-fragmentation will
provide the radical intermediate (D). The oxidation of
this species will give a 2-vinyl substituent in the desired
product. This scheme may be advantageous in that a
part of the original hemiacetal skeleton is incorporated
into the protecting group of the liberated hydroxyl
group, in the form of acetate.

Along this line, the reaction conditions were extensively
examined (Table 1). In our first attempt for the use of
iacetal 5fa
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Table 2. Conditions for the b-fragmentation with iodobenzene diacetatea

Entry Substrate Additive Solvent Yield (%) Recovery (%)

1 5f –– Benzene No reaction

2 5f Pyridine Benzene 27 10

3 5f 2,20-Bipyridyl Benzene 9 43

4 5f 2,6-Lutidine Benzene 30 10

5 5f 2,6-Lutidine Cyclohexane 26 19

6 5f 2,6-Lutidine ClCH2CH2Cl 16 16

7 5f 2,6-Lutidine DME 13 34

8b 5f I2, hm CH2Cl2 Decomposition

9c 5f 2,6-Lutidine Benzene 39 ––

10c 6f 2,6-Lutidine Benzene 65 ––

a PhI(OAc)2, Cu(OAc)2, reflux, 15 h.
b PhI(OAc)2, tungsten lamp (100W), rt, 10 h.
c 5mmol scale; PhI(OAc)2 (20mmol, five times), Cu(OAc)2 (2.0mmol, five times), 2,6-lutidine (6.0mmol), benzene (100mL), reflux, 5 h; for detail, see
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lead(IV) acetate and copper(II) acetate under Rigby�s
conditions,10 however, only a trace amount of the
desired product 7e was obtained as a very complex
mixture with a number of byproducts. Even after the
extensive investigation on the reaction conditions with
this radical initiator, the yield of 7e remained as low as
12% (entry 1).

We turned our attention to the use of organohyperva-
lent iodine reagents, by which a wide range of applica-
tions have been exploited in organic synthesis.11 It has
been known that a combined use of iodobenzene diac-
etate, pyridine, and a catalytic amount of copper(II)
acetate equally worked well instead of the lead(IV)-
mediated decarboxylative radical formation into
alkene.12 Through the studies with several candidates
(entries 2–4), we selected iodobenzene diacetate, and
based on the use of this reagent, the reaction conditions
were further elaborated (Table 2). The excessively used
iodobenzene diacetate itself did not work as the oxidant
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Scheme 3. Reagents and conditions: (a) (CH2OH)2, p-TsOH, benzene, reflu

TBSCl, imidazole, DMF, 60 �C; (e) PPTS, acetone–H2O, 60 �C (2 steps 75%);

(h) LHMDS, HMPA, THF, )78 �C, then MeI (74%); (i) LHMDS, HMPA,
for the radical intermediate (D), and the use of cop-
per(II) acetate was necessary (entry 1). As the substitu-
ents for another additive, pyridine (entry 2), which
works as the ligand indispensable for the monomeriza-
tion of the copper complex,13 2,20-bipyridyl and 2,6-
lutidine were compared (entries 3 and 4). The latter
advantageous case was further studied by a change of
the reaction solvent (entries 4–7), and the highest yield
was given in benzene (entry 4). Although the yield of 7e
increased, this reaction produced a considerable amount
of byproducts due to the side reactions, which occurred
under the severe reflux conditions. In turn, a more mild
photochemical initiation and the following trapping
with iodine were attempted (entry 8), expecting to
obtain a primary iodide, which would be led to the vinyl
group by the subsequent dehydrohalogenation. To our
disappointment, the multispots on TLC analysis were
still observed. Among the many products, only an
isolable but very unstable component showed an acetate
of the partial structure by NMR, immediately after the
OHO
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purification. The component rapidly turned red by
releasing iodine. Based on these evidences, we reasoned
that the desirable b-fragmentation certainly occurred to
give an iodide, but due to its unstable nature, further
decomposition predominated. In contrast, we were
pleased that under the optimized conditions14 giving the
highest yield of 7e (39%, entry 9) from 5f, the yield of the
five-membered ring product 8e was remarkably high
(65%, entry 10) from the substrate 6f. In this way, new
stereochemically pure cyclohexanone 7e15 and cyclo-
pentanone 8e16 were obtained.

We continued the functional group transformations
toward the key synthetic intermediates of B as shown in
Scheme 3. The carbonyl group of 7e was protected as
1,3-dioxolane (9)17 in 89% yield, and the ozonolysis of 9
followed by the reduction provided the diol 1018 in 77%
yield from 9. Both the TBS group (11)19 and the benzyl
group (12)20 were effectively introduced in 75% yield and
quantitative yield from 10, respectively. This bis-benzyl
ether 12 implies the successful approach to the diaste-
reomeric synthetic equivalent of 2b0 reported by Nakada
and co-workers.3 Although these compounds (11 and
12) have three functional groups, all adjacent to the
quaternary chiral center in a very congested manner, the
methylation was successful to provide 13 and 14,
important synthetic intermediates for B, in 75% yield
and quantitative yield as a diastereomeric mixture at the
C-6 position (ca. 1:1 mixture), respectively.

In conclusion, a new entry to stereochemically pure
forms of highly functionalized cycloalkanone interme-
diates for natural product synthesis, by means of a
combination of yeast-catalyzed reduction and sub-
sequent radical b-fragmentation as the key steps, was
disclosed.
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